59 research outputs found

    Exploiting flexible functional split in converged software defined access networks

    Get PDF
    5G targets to offer a huge network capacity to support the expected unprecedented traffic growth due mainly to mobile and machine-type services. Thus, the 5G access network has to comply with very challenging architectural requirements. Mobile network scalability is achieved by playing appropriately with the centralization of network functions and by applying the functional split introducing the fronthaul. Although more advantageous in terms of network management and performance optimization, low-layer functional split options require larger bandwidth and lower latency to be guaranteed by the fronthaul in the access network, while preserving other concurrent fiber-to-the-x services. Thus, advanced mechanisms for the efficient management of available resources in the access network are required to control jointly both radio and optical domains. Softwarized mobile and optical segments facilitate the introduction of dedicated protocols to enable the inter-working of the two control planes. This paper proposes a new cooperation scheme to manage the adaptive flexible functional split in 5G networks conditioned to the resource availability in the optical access network. Techniques for the accurate estimation of available bandwidth and the associated real-time selection of the best suitable functional split option are investigated. Results show that the proposed software defined converged approach to wavelength and bandwidth management guarantees the optimal allocation of optical resources. The triple exponential smoothing forecasting technique enables efficient coexistence of mobile fronthaul and fixed connectivity traffic in the network, reducing traffic impairments with respect to other well-known forecasting techniques, while keeping the same level of centralization.This work was partially supported by the Italian Government under CIPE resolution no. 135 (December 21, 2012), project INnovating City Planning through Information and Communication Technologies (INCIPICT) and by the EC through the H2020 5G-TRANSFORMER project (Project ID 761536)

    Efficient Management of Flexible Functional Split through Software Defined 5G Converged Access

    Get PDF
    Softwarization of mobile and optical networks facilitates the inter-working between control planes of the two domains, allowing a more efficient management of available resources. Radio resource utilization benefits from the centralization of mobile network functionalities with the application of high-order functional split options by fronthauling. However, higher-order options require larger bandwidth and lower latency in the fronthaul. Advanced mechanisms for the joint control of the access network represent the sole solution to support such fronthaul requirements. This paper proposes a new cooperation scheme to manage the adaptive flexible functional split in 5G networks conditioned to the resource availability in the optical access network. Results show that the proposed converged approach guarantees the optimal allocation of optical resources through a software defined wavelength and bandwidth allocation. The proposed scheme adapts to current traffic demand and simultaneously allows the mobile network to take advantage of the highest possible centralization of mobile network functions by leveraging flexible functional split adaptively compliant to the current optical traffic demand.This work was partially supported by the Italian Government under CIPE resolution no. 135 (December 21, 2012), project INnovating City Planning through Information and Communication Technologies (INCIPICT) and by the EC through the H2020 5G-TRANSFORMER project (Project ID 761536

    Live migration of virtual machine and container based mobile core network components: A comprehensive study

    Get PDF
    With the increasing demand for openness, flexibility, and monetization, the Network Function Virtualization (NFV) of mobile network functions has become the embracing factor for most mobile network operators. Early reported field deployments of virtualized Evolved Packet Core (EPC) - the core network (CN) component of 4G LTE and 5G non-standalone mobile networks - reflect this growing trend. To best meet the requirements of power management, load balancing, and fault tolerance in the cloud environment, the need for live migration of these virtualized components cannot be shunned. Virtualization platforms of interest include both Virtual Machines (VMs) and Containers, with the latter option offering more lightweight characteristics. This paper's first contribution is the proposal of a framework that enables migration of containerised virtual EPC components using an open-source migration solution which does not fully support the mobile network protocol stack yet. The second contribution is an experimental-based comprehensive analysis of live migration in two virtualization technologies - VM and Container - with the additional scrutinization on the container migration approach. The presented experimental comparison accounts for several system parameters and configurations: flavor (image) size, network characteristics, processor hardware architecture model, and the CPU load of the backhaul network components. The comparison reveals that the live migration completion time and also the end-user service interruption time of the virtualized EPC components is reduced approximately by 70% in the container platform when using the proposed framework.This work was supported in part by the NSF under Grant CNS-1405405, Grant CNS-1409849, Grant ACI-1541461, and Grant CNS-1531039T; and in part by the EU Commission through the 5GROWTH Project under Grant 856709

    Extending P4 in-band telemetry to user equipment for latency-and localization-aware autonomous networking with AI forecasting

    Get PDF
    In beyond-5G networks, detailed end-to-end monitoring of specific application traffic will be required along with the access-backhaul-cloud continuum to enable low latency service due to local edge steering. Current monitoring solutions are confined to specific network segments. In-band network telemetry (INT) technologies for software defined network (SDN) programmable data planes based on the P4 language are effective in the backhaul network segment, although limited to inter-switch latency; therefore, link latencies including wireless and optical segments are excluded from INT monitoring. Moreover, information such as user equipment (UE) geolocation would allow detailed mobility monitoring and improved cloud-edge steering policies. However, the synchronization between latency and location information, typically provided by different platforms, is hard to achieve with current monitoring systems. In this paper, P4-based INT is proposed to be thoroughly extended involving UE. The INT mechanism is designed to provide synchronized and accurate end-to-end latency and geolocation information, enabling decentralized steering policies, i.e., involving UE and selected switches, without SDN controller intervention. The proposal also includes an artificial-intelligence-assisted forecast system able to predict latency and geolocation in advance and trigger faster edge steering

    Impact of CoMP VNF Placement on 5G Coordinated Scheduling Performance

    Get PDF
    To address demanding requirements in terms of expected throughput, latency and scalability, 5G networks will offer high capacity to support huge volumes of traffic generated by heterogeneous services. Dense deployment of small cells can provide a valid solution but are prone to high levels of interference especially at the cell-edge. However, to reduce inter-cell interference and improve cell-edge throughput, a set of techniques known as Coordinated Multipoint (CoMP) has been introduced. Coordinated Scheduling (CS) is a CoMP technique that assigns resources to mobile users to avoid interference between users that are assigned within the same Physical Resource Blocks (PRBs). On the other hand, Software Defined Mobile Networking (SDMN) and Network Function Virtualization (NFV) represent two key technologies to enhance flexibility and efficiency of resource usage within the Radio Access Network (RAN). However, the implementation of CoMP CS techniques on NFV architecture in a dense small cell scenario have not been analyzed yet. In this paper, we propose the joint use of CoMP CS and NFV by studying the implications of different deployment strategies, as constrained by the physical topology of the underlying RAN. The performance of both distributed and centralized CoMP CS are compared in terms of convergence delay and traffic overhead. Guidelines for the optimal design are provided.This work was partially supported by the Italian Government under CIPE resolution no. 135 (December 21, 2012), project INnovating City Planning through Information and Communication Technologies (INCIPICT) and by the EC through the H2020 5G-TRANSFORMER project (Project ID 761536)

    Impact of RAN Virtualization on Fronthaul Latency Budget: An Experimental Evaluation

    Get PDF
    In 3GPP the architecture of a New Radio Access Network (New RAN) has been defined where the evolved NodeB (eNB) functions can be split between a Distributed Unit (DU) and Central Unit (CU). Furthermore, in the virtual RAN (VRAN) approach, such functions can be virtualized (e.g., in simple terms, deployed in virtual machines). Based on the split type, different performance in terms of capacity and latency are requested to the network (i.e., fronthaul) connecting DU and CU. This study experimentally evaluates, in the 5G segment of the Advanced Research on NetwOrking (ARNO) testbed (ARNO-5G), the fronthaul latency requirements specified by Standard Developing Organizations (SDO) (3GPP in this specific case). Moreover it evaluates how much virtualization impacts the fronthaul latency budget for the the Option 7-1 functional split. The obtained results show that, in the considered Option 7-1 functional split, the fronthaul latency requirements are about 250 μs but they depend on the radio channel bandwidth and the number of the connected UEs. Finally virtualization further decreases the latency budget.This work has been partially funded by the EU H2020 5GTransformer Project (grant no. 761536

    Network Solutions for CoMP Coordinated Scheduling

    Get PDF
    Demanding throughput, latency and scalability requirements of 5G networks may be addressed by relying on dense deployments of small cells. Coordinated Multipoint (CoMP) Coordinated Scheduling (CS) techniques are introduced to reduce inter-cell interference in case of dense deployment, given that local CoMP-CS information from the evolved NodeBs (eNodeBs) in the cluster are timely collected at the scheduling decision entity. This work studies how the distribution of CoMP-CS cell information is affected by the backhaul infrastructure in terms of both physical and logical topology. The differentiation between physical and logical infrastructure is justified in the context of new approaches like Software Defined Networking and Network Function Virtualization that enable the dynamic configuration of the network. We consider either a Packet Switched Network with three possible topologies (namely, ring, mesh and star) or a Time Division Multiplexing Passive Optical Network (TDM-PON), both carrying heterogeneous traffic. To improve the convergence time in the TDM-PON, we propose a novel bandwidth allocation scheme to prioritize the signaling traffic with respect to data traffic. Performance of both distributed and centralized CoMP-CS are compared in terms of convergence delay and traffic overhead. Finally, we analyze the impact of the periodicity of CS operations on mobile performance, in terms of average UEs throughput, in the presence of different cell loads
    • …
    corecore